VG2000

High Performance Vertical Gyro

Main Features

－Output：Pitch，Roll，Yaw，Acceleration，Angular Speed
－Attitude Accuracy：Static $< \pm 0.1^{\circ}$ ，Dynamic $\leq \pm 0.3^{\circ}$
－Range：Gyro $\pm 500 \%$ s，Acc $\pm 10 \mathrm{~g}$ ，（ODM supported）
－Wide Input Power Range：5～24VDC
－Military Level Casing，High Survivability
－Compact and Lightweight： $50 \times 45 \times 21 \mathrm{~mm}, 70$ grams
－Wide Working Temperature：$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$

VG2000 high performance vertical gyro is a standalone compact，high accuracy vertical gyro system that utilizes the MEMS－based inertial sensors which have passed temperature calibration and nonorthogonal error compensation，so VG2000 can output precisely three attitude angles（pitch，roll，yaw）and other auxiliary sensing signals（acceleration and angular velocity）of the carrier that the VG2000 is installed．
VG2000 vertical gyro offers a highly－effective solution for cost－sensitive demanding applications．It adopts advanced MEMS components，which reduces the cost deeply．The system enjoys small size and light weight， it is widely applied in UAV Flight Control，Unmanned Vehicle Control，Platform Stabilization，Robotics Control，Antenna Stabilization，etc．

```
12-Step Quality Control, Super Reliability, More
    Functions
\(\checkmark\) Adopting Original Big Brand Component，High－class Material，Competitive Price
```

[^0]
Typical Applications

AGV

Antenna Pointing

Industrial Control

UAV Flight Control

VG2000

High Performance Vertical Gyro

Technical Specifications

Technical Specs

Parameter	Value	Comments
Attitude		
Range：Roll，Pitch	$\pm 180^{\circ}, \pm 90^{\circ}$	
Accuracy	$<0.1^{\circ}(1 \sigma)$	
Dynamic Accuracy	$<0.3^{\circ}$（RMS）	
Resolution	0.01°	
Gyro		
Range：Roll，Pitch，yaw	$\pm 500 \%$ s	default setting
	$\pm 75 \% \mathrm{~s}, \pm 150 \% \mathrm{~s}, \pm 900 \% \mathrm{~s}$	optional
Noise	$<0.3 \%$ s（RMS）	
Zero Error（ $25^{\circ} \mathrm{C}$ ）	$<0.2{ }^{\circ} \mathrm{s}$	
Bias Instability	$24^{\circ} / \mathrm{h}\left(75^{\circ} / \mathrm{s}\right.$ range） $40^{\circ} / \mathrm{h}$（ $900^{\circ} / \mathrm{s}$ range）	typical value，Allen Variance
Bias Temperature Error	$\pm 3^{\circ} / \mathrm{s}$	
Zero Drift Repeatability	0．14\％$\%$（RMS）	
Scale Factor Non－linearity	0．2\％	
Bias Acceleration Sensitivity	$0.077^{\circ} / \mathrm{s} / \mathrm{g}$（typical） $0.17^{\circ} / \mathrm{s} / \mathrm{g}$（max）	
Rate Noise Density	$0.025^{\circ} / \mathrm{s} / \mathrm{sqrHz}$	
Angle Random Walk Coefficient	0．28\％ h	Allen Variance
Bias Vibration Sensitivity	$0.001 \% \mathrm{~s} / \mathrm{g} 2 \mathrm{rms}$（typical） $0.003^{\circ} / \mathrm{s} / \mathrm{g} 2 \mathrm{rms}(\mathrm{max})$	12 g （RMS），10Hz $\sim 5 \mathrm{kHz}$ ，random
Bandwidth	$5 \sim 160 \mathrm{~Hz}$	

VG2000

High Performance Vertical Gyro

Technical Specifications

Technical Specs

Parameter	Value	Comments
Accelerometer		
Range：X，Y，Z	$\pm 10 \mathrm{~g}$	default
	$\pm 20 \mathrm{~g}, \pm 40 \mathrm{~g}$	ODM supported
Noise	＜ 5 mg （RMS）（Max）	
Zero Error	＜ 5 mg （max）	including calibration error，working drift
Bias Full Temperature Error	$0.5 \% \mathrm{mg} /{ }^{\circ} \mathrm{C}$	$-40 \sim+125^{\circ} \mathrm{C}$
Scale Factor Error	$\pm 0.1 \%$ FSR	
Sacle Factor Full Temperature Drift	$\pm 0.01 \% \mathrm{mg} /{ }^{\circ} \mathrm{C}$	$-40 \sim+125^{\circ} \mathrm{C}$
Resolution	Range／32768／LSB	16bit
Bandwidth	1～1500Hz	50\％attenuation
Environment Condition		
Working Temperature	$-40 \sim+85^{\circ} \mathrm{C}$	
Protection Level	IP67	
Electromagnetic compatibility	Compatible with EN61000 and GBT17626	
MTBF	≥ 5000 hours	
Vibration Resistance	$10 \mathrm{grms}, 10 \sim 1000 \mathrm{~Hz}$	
Shock Resistance	100g＠11ms， 3 axes，（half sine wave）	
Power Supply		
Input Voltage	5～24VDC	
Current	25mA＠12VDC	
Communication Protocol		
Default Interface	RS232	
Baud rate	115200	
Data Update Rate	200 Hz	settable
Physical Parameter		
Dimension	$50 \mathrm{~mm} * 45 \mathrm{~mm} * 21 \mathrm{~mm}$	
Weight	around 70 grams	
Connector	5 pin mini aviation connector	
Location Hole	4 holes	

VG2000

High Performance Vertical Gyro

Pins Definition

Pins Definition

Pins No．	$\mathbf{5}$ pin mini aviation connector Line Color	Name	Description
1	Brown	Vcc	power positive pole
2	Black	GND	power gound
3	White	RS232＿TX	RS232 data transmitting
4	Blue	RS232＿RX	RS232 data receiving
5	Gray	RS232＿GND	RS232 signal ground（short circuit with power ground inside the sensor）

Dimension \＆Package

（Unit：mm）

three－view drawing with 5 pin mini aviation connector

VG2000

High Performance Vertical Gyro

Communication Protocol

the electronic parameters of RS232 communicaiton protocol are as follows：
＞Baud rate： 115200
＞Data bit： 8
＞Stop bit： 1
＞Check bit：none

VG mode：

the data string is sent out every 5 ms ，and each data string includes 32 bytes，the detailed description see as follows：

Data String Definition

Name	Byte Length	Description
Initial Code	4	$0 \times 4 \mathrm{E} 0 \times 4 \mathrm{~A} 0 \times 1 \mathrm{~B} 0 \times 91$
X axis of acceleromter	2	With symbol 16 bit shaping complement form output，high byte in front，scale factor：（accelerometer range／32768）g／LSB
Y axis of acceleromter	2	With symbol 16 bit shaping complement form output，high byte in front，scale factor：（accelerometer range／32768）g／LSB
Z axis of acceleromter	2	With symbol 16 bit shaping complement form output，high byte in front，scale factor：（accelerometer range／32768）g／LSB
X axis of gyro	2	With symbol 16 bit shaping complement form output，high byte in front，scale factor：（gyro range／32768）degree／s／LSB
Y axis of gyro	2	With symbol 16 bit shaping complement form output，high byte in front，scale factor：（gyro range／32768）degree／s／LSB
Z axis of gyro	2	With symbol 16 bit shaping complement form output，high byte in front，scale factor：（gyro range／32768）degree／s／LSB
X axis of magnetic sensor	2	0
Y axis of magnetic sensor	2	0
Z axis of magnetic sensor	2	0
Temperature	2	With symbol 16 bit shaping complement form output，high byte in front，scale factor：$(1 / 100)^{\circ} \mathrm{C} / \mathrm{LSB}$
Yaw Angle	2	With symbol 16 bit shaping complement form output，high byte in front，scale factor：（180／3276）deg／LSB
Roll Angle	2	With symbol 16 bit shaping complement form output，high byte in front，scale factor：（180／3276）deg／LSB

VG2000

High Performance Vertical Gyro

Communication Protocol

Data String Definition

Name	Byte Length	Description
Pitch Angle	2	With symbol 16 bit shaping complement form output，high byte in front，scale factor：$(90 / 3276)$ deg／LSB
Sum Check	2	high byte in front，low byte in behind，the sum of all the front data

Remarks：during turning on the sensor，please keep the sensor in static status，and after turning on the sensor，please keep the sensor in statis status more than 5 seconds

Axis \＆Angle Definition

The arrows of attitude angles indicate positive direction，it means that：
Positive direction of pitch angle：rotation around $+Y$ axis
Positive direction of roll angle：rotation around $+X$ axis
Positive direction of roll angle：rotation around $+Z$ axis

VG2000

High Performance Vertical Gyro

Order Information

VG2000：model name

XXX：Gyro Measurement Range：
$500= \pm 500^{\circ} / \mathrm{sec}$（Default）
$075= \pm 75^{\circ} / \mathrm{sec}$
$150= \pm 150^{\circ} / \mathrm{sec}$
$900= \pm 900 \% \mathrm{sec}$
XX：Accelerometer Measurement
Range： $10= \pm 10 \mathrm{~g}$（Default）
$20= \pm 20 \mathrm{~g}$
$40= \pm 40 \mathrm{~g}$

For example，VG2000－900－10 means that the VG2000 with gyro range：$\pm 900^{\circ} / \mathrm{sec}$ ，accelerometer range： $\pm 10 \mathrm{~g}$ ．

[^0]: \checkmark Real Actual Precise after Calibration，Perfect Performance
 \checkmark Successful Applications in Tens of Fields，More than 1000 Customers are Using

